ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

What Is the Effect of the Pump on Control Valves at Lower Rates?

This guest post is authored by Greg McMillan.

In the ISA Automation Week Mentor Program I am providing guidance for extremely talented individuals from Argentina, Brazil, Malaysia, Mexico, Saudi Arabia, and the USA. We will be sharing a question and the answers each week. If you would like to provide additional answers, please send them to Susan Colwell at ISA. The eighth question in the ISA mentor program is from Danaca Jordan (USA):

"What is the effect of the pump on control valves at lower rates?"

If the pump is only supplying the subject valves, at the lower rates the pump head developed increases causing the control valve to ride closer to its seat where the friction is greatest. Continual cycling at low rates is most likely caused by increased stick-slip most noticeable for valve positions less than 20%. At low rates (low system frictional losses), you are also subject to a greater effect of changes in source and destination suction heads as seen in the intersection of system curve with the pump curve. Adaptive control can compensate for changes in process gain from installed characteristics or the different effect of split range valves. For a big-small valve, valve position control (VPC) is preferable to split range control if the VPC is fast enough by the use of feedforward. See the entries “How to Succeed – Part 5” and “How to Succeed – Part 6”  for how to get the control valve that will have the least stick-slip and the greatest linearity and rangeability.

 

Greg McMillan
Greg McMillan
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including "New Directions in Bioprocess Modeling and Control Second Edition 2020" and "Advanced pH Measurement and Control Fourth Edition 2023." Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Greg has recently retired as a part-time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the digital twin for exploring new opportunities. Greg received the ISA Mentoring Excellence Award in 2020 and the ISA Standards Achievement Award in 2023.

Related Posts

3 Ways Industry 4.0 Can Upgrade Industrial Water Treatment Methods

Industrial water treatment methods must evolve to remain relevant and efficient. Many decision-makers hav...
Emily Newton Mar 12, 2024 7:38:26 PM

ISA Business Academy: A Mini-MBA For Automation Industry Leaders

The ISA Business Academy is a 10-week fully digital program beginning 28 March for both current and aspir...
Ashley Ragan Mar 11, 2024 10:08:24 AM

How Automation Is Transforming the Recycling Industry

Modern recycling industry professionals are increasingly interested in how automation could boost their o...
Ellie Gabel Mar 8, 2024 8:00:00 AM