The following tip is from the ISA book by Greg McMillan and Hunter Vegas titled 101 Tips for a Successful Automation Career, inspired by the ISA Mentor Program. This is Tip #6, and was written by Hunter.

I am a risk-averse engineer. My clients do NOT like surprises, and they pay me a decent salary to make sure that their automation projects go in as painlessly as possible. Therefore, I do not apply new technologies unless I know they work and I am content to let others debug the latest software revision before I upgrade to it. Despite all that, I absolutely HATE the expression “….but we have always done it that way.” I have no problem with “We do it that way because we tried x and y happened” or “We considered that technology but chose this other method because…”, but when a company just refuses to try a technology because it is “different” it drives me crazy.

Concept: Sticking with tried and true techniques that work and are risk-free certainly makes sense. Living on the “bleeding edge” of technology is painful. However, that is no excuse for failing to investigate and try new things.

Details: Automation professionals are trained to avoid risk. That is a good thing because trialing untested pieces of equipment or applying novel methods of safety shutdown when designing a control system can have severe consequences if things go awry. However, that is NOT a reason to avoid making any changes at all. Obviously, the best solution is somewhere in the middle.

Some engineers take great delight in getting the latest version of software or specifying the latest technology product. However, companies often release software versions after minimal testing and rely on their customers to “beta test” their product for them. Rather than debugging code for these firms, the wisest course of action is to lag behind by a software revision or at least wait for Revision X.1 to be released, which fixes the bulk of the bugs from Revision X.0. Similarly, it can be best to delay hopping on the “technology du jour” bandwagon, because despite what the marketing circulars say, all technologies have pros and cons, and no one product or technology is the panacea for every woe.

However, decision-makers at some plants refuse to change ANYTHING because “It has always been done that way, and that is the way we do it.” This ostrich mentality hamstrings a plant’s future growth and profitability. Keeping abreast of new products and technologies as they are offered and taking advantage of them when it makes sense keeps a plant competitive. Look for opportunities to try new equipment or software on noncritical systems, where the financial and operational risks are low. Occasionally vendors will allow you to try a particular instrument for free and only pay for it if it works in that application.

When making a change is appropriate, make sure that you build a compelling argument for the change, listing the risks and benefits. Nearly all change is going to cause some short-term discomfort. People need to understand the long-term benefits so they will stop fighting the change and will work toward a better future.

Watch-Outs: If a plant offers resistance to a new idea, do NOT immediately assume they are just afraid of change. Investigate what has been tried before, and find out exactly why it went wrong. The “old timers” can be an invaluable source of information. There may be some aspect of the process that will not allow the proposed technology to work, and a conversation with the right people could help you avoid an embarrassing failure.

Do not assume that everyone who went before you were idiots. Some might well have been, but dismissing all of the work that has been accomplished previously means recreating everything from scratch. That will invariably require a lot of time and money and will probably force you to re-learn the hard lessons already learned by your predecessors.

Insight: One way to avoid problems when considering making changes is to develop a network of automation engineers in a couple of plants, or ideally across a couple of industries. (ISA or other technical societies can be an excellent means of doing that.) When considering a new technology, ask around and find out how others have fared.

Rule of Thumb: Do not be scared to try new equipment or software but be wise in deciding when and where to try it. Realize that the first version of nearly every software product will be rife with bugs and problems. If possible, wait for the next revision release. Similarly, “Serial #1” hardware or equipment that has just been undergone an extreme re-design will likely have some flaws that will take a generation or two to rectify.

About the Author
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including Advances in Reactor Measurement and Control and Essentials of Modern Measurements and Final Elements in the Process Industry. Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Presently, Greg is a part time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the virtual plant for exploring new opportunities. He spends most of his time writing, teaching and leading the ISA Mentor Program he founded in 2011.

Connect with Greg

About the Author
Hunter Vegas, P.E., has worked as an instrument engineer, production engineer, instrumentation group leader, principal automation engineer, and unit production manager. In 2001, he entered the systems integration industry and is currently working for Wunderlich-Malec as an engineering project manager in Kernersville, N.C. Hunter has executed thousands of instrumentation and control projects over his career, with budgets ranging from a few thousand to millions of dollars. He is proficient in field instrumentation sizing and selection, safety interlock design, electrical design, advanced control strategy, and numerous control system hardware and software platforms. Hunter earned a B.S.E.E. degree from Tulane University and an M.B.A. from Wake Forest University.

Connect with Hunter

Pin It on Pinterest