This post is an excerpt from the journal ISA Transactions.  All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.

Abstract: In framework of traditional PID controllers, there are only three parameters available to tune, as a result, performance of the resulting system is always limited. As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, a scheme of PID controllers with error-dependent integralMan presses button on electronic control panel action is proposed. Compare with traditional PID controllers, the error-dependent integration is employed in the proposed PID controller, in which more parameters are available to be tuned. It provides additional flexibility for controller characteristics and tuning as well, and hence makes better transient performance. In addition, asymptotic stability of the resulting closed-loop system is guaranteed. All signals in the system are bounded when exogenous disturbances and measurement noises are bounded. Numerical example demonstrates the superior transient performance of the proposed controller over the traditional one via Cartesian space set-point manipulation of two-link robotic manipulator.

 Free Bonus! To read the full version of this ISA Transactions article, click here.

ISA membership entitles you to free access to all ISA Transactions articles plus a wealth of technical content, industry information, free webinars, training opportunities, program discounts, certification and licensure and professional networking.

Click here to join ISA … learn, advance, succeed!


2006 Elsevier Science Ltd. All rights reserved.

Pin It on Pinterest