The following technical discussion is part of an occasional series showcasing the ISA Mentor Program, authored by Greg McMillan, industry consultant, author of numerous process control books, 2010 ISA Life Achievement Award recipient and retired Senior Fellow from Solutia Inc (now Eastman Chemical). Greg will be posting occasional questions and responses from the ISA Mentor Program, with contributions from program participants.

Universities teach you first principles and math to take off in a technical career. However, a launch pad is not much good without the launch vehicle. Proficiency in automation depends upon “learning on the job.” It is generally acknowledged that it takes about five years before an automation engineer is productive and ready to be the plant area or project lead. So what can you do to cut this deadtime out of an automation career and avoid the worst-case scenario of failure to launch?

To understand what has and could be done consider what accelerated my development. I was fortunate in going to work for Monsanto, who at the time was a leader in modeling and control with the likes of Professor Emeritus Dr. James Fair (University of Texas), Dr. Ted Williams (Purdue), and Automation Hall of Famers Bob Otto, Vernon Trevathan, and Terry Tolliver, and a whole host of top-notch designers.

The sequence of events and some memories from the school of hard knocks exemplify the progression of a career.

Years 1-2:

  1. Attended nine-week internal electrical and instrument (E&I) school and lab. Learned principles, calibration, and maintenance of instrumentation and valves.
  2. Moved to the Nitro WV plant to be E&I field construction supervisor, where unfortunately the plant technicians stayed out of the picture until the plant was commissioned and running great. Had to use pipefitters to checkout and calibrate the transmitters and valves.
  3. The first production unit had a nasty difficult rubber chemical batch process not fully known. The start-up was exciting to say the least.
  4. Learned piston valves should not be stored outside where the springs and cylinders would rust and seize despite the best lubricators, and these on-off valves made into throttle valves by slapping on a spool positioner and pulley-cable system were a joke.
  5. Learned instrument installation and controller tuning could make or break a control loop and working with a good process engineer was essential. Fortunately, a great instrument designer guided me remotely and then onsite for start-up.
  6. Continued on to start up several production units in the next year with such endearing chemicals as acrolein and hydrogen cyanide.

Years 3-4:

  1. Moved to help start up a plant in Saint Louis whose reaction area was rebuilt after blowing up.
  2. Returned to headquarters and became the lead design engineer for a new plant with a catalyst carried in wheel barrels with shock absorbers because one bump would cause an explosion.
  3. Learned to appreciate Cajun food and humor.
  4. The most experienced instrument engineer, Stan Weiner, was my mentor. Weiner and I became close friends and went on to author a series of humorous books, the classic being How to Become an Instrument Engineer, an automation book read and enjoyed by family and friends.

Years 5-7:

  1. Moved to Cambridge, Mass., to be the lead E&I design engineer for the world’s largest plant of a chemical intermediate at a Texas City plant with an incredibly progressive E&I department.
  2. After design was completed, moved to Galveston, Tex., to supervise an experienced contractor and two new engineers with interesting personalities in E&I construction and start-up.
  3. Realized I was not meant to be a supervisor.
  4. Learned the rule to not use positioners on fast loops, while theoretically pleasing, was a disaster in the field and that most of my attempts to save money caused problems.

Read the full article on InTech’s website.

Pin It on Pinterest

Shares