What Is the Impact of Theft, Accidents, and Natural Losses From Pipelines?

What Is the Impact of Theft, Accidents, and Natural Losses From Pipelines?

This guest blog post is part of a series written by Edward J. Farmer, PE, author of the new ISA book Detecting Leaks in Pipelines. To download a free excerpt from Detecting Leaks in Pipelines, click here. If you would like more information on how to purchase the book, click this link.

 

Last month’s blog produced uncommon interest, some from old friends and some from persons newly engaged in struggling to preserve assets. One had experience with military operations in Iraq. They understood that theft is not just benign self-interest but may be conducted with the intent of deliberate harm.

Sometimes such operations disclose information about operator capabilities and requirements. Some deliberately embarrass the entities dedicated to preventing such incursions. Perhaps the message is that petroleum is valuable in many contexts and worthy of active care. In some locations and situations our confidence that the pipe we buried last year is still doing just what we intended may be unrealistically naïve.

Possibly the world leader in organized anti-theft effort is Pemex. Monitoring has been in-place on some of its systems for well over a decade and the results have been amazing. Initially some systems were looked at more as free distribution points where “the people’s petroleum” was delivered. Of course, that was never quite the intent, and there are many stories. This year, some estimates put Pemex losses to theft at over USD$1.5 billion. Applying its highly successful aggressive monitoring and interdiction program could, based on actual experience, eliminate most or even all of those losses.

 

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

 

The earliest anti-theft efforts began on lines known to be heavily attacked. Monitoring could detect a tap and its location within minutes. Special pre-positioned response units would be notified and would deploy into tactical positions. Usually the theft operation’s people and equipment could be apprehended. After a few such interdictions word got out. Theft from targeted areas declined to zero. Unfortunately, theft continued unabated in unmonitored areas. The prospect of getting caught diminished enthusiasm, but actual interdiction seemed necessary to completely discourage these operations.In some countries, enabled and exacerbated by corruption or government dysfunction, theft seems to have become normal. It can be hard to curtail these situations once they are firmly started. The spread of corruption seems systemic and the impact severe, not just from damages to the facilities and theft of the product of the producers, but also to the people and businesses that rely on normal access to these products. The fact the petroleum is stolen does not make it free to users – in fact the incursions can produce scarcity, increasing user-level cost.

In these matters, automation helps. Theft can, with appropriate effort, be curtailed or limited. Rational economic outcomes restore some sense of markets and order which tends to normalize and enhance business in the surrounding communities. The power and wealth associated with these activities can be limited or eliminated by fast and decisive action. Even sophisticated theft mechanisms can be identified by appropriate monitoring methods and equipment. Technology moves the endeavor from a conflict of wills to the effective use of resources.

In one country, a pipeline that had been a substantial theft target was estimated to have perhaps 16 active theft taps at any given moment. Losses were in the many thousands of dollars per hour. A monitoring system was deployed, resulting in more than 20 apprehensions over the first few days. Theft attempts continued, but there were far fewer of them. Over a couple of months, theft on the entire pipeline was brought to, and maintained at, zero. Essentially, getting caught stealing oil involved sufficient consequences to concern these thieves, and the chance of getting caught was perceived to be very high. Together, these issues made theft an unattractively expensive activity.

So, technology, along with a determined and ethical attitude, can control these things. It isn’t even all that hard once it is productively organized and initiated. Safety is enhanced. Profitability is enhanced, security along the pipeline is enhanced, and business strength in the region improves – all good things for a successful and organized society.

In this situation, as is often the case, the pipeline crossed a substantial distance covered by a double-canopy forest. People living in the region had long ago discovered the value of the product in the pipeline both for their own use and as a product that could be sold or traded to others. Even with air surveillance it was difficult for the operator to observe the alignment. Roads in and out of the pipeline alignment were available and well known. The monitoring program amounted to detecting the occurrence and location of a leak, transmitting the data to a rapid response force, and then monitoring the progress of the withdrawal until the response team arrived. If the withdrawal terminated early, the response team and their equipment could be re-routed to an exit-way. The results of the project, before and after the onset of monitoring, are shown in the graphic below.

 

Uncontrolled losses from pipelines – be it from accidents, equipment failures, or theft – is not a benign irritation. It can dramatically affect profitable operations and the sustained interest of investors. It can damage livestock and crops. It can initiate unimaginably intense fires and explosions that destroy lives, homes, and businesses along the pipeline. Surrounding businesses, such as fishing and agriculture, can be profoundly affected. Sometimes the damage is truly accidental, sometimes it is the result of poor design or changing operating conditions. Sometimes it results from inadequate maintenance practices such as corrosion control. In any case, the operator’s future may be improved or enhanced by responsible operation and aggressive mitigation. The public may be willing to excuse accidents but will often want to punish whatever they perceive as negligence.

Did you miss the other blogs in this series? Click these links to read the posts:

How to Optimize Pipeline Leak Detection: Focus on Design, Equipment and Insightful Operating Practices
What You Can Learn About Pipeline Leaks From Government Statistics
Is Theft the New Frontier for Process Control Equipment?

About the Author

Edward Farmer has more than 40 years of experience in the “high tech” part of the oil industry. He originally graduated with a bachelor of science degree in electrical engineering from California State University, Chico, where he also completed the master’s program in physical science. Over the years, Edward has designed SCADA hardware and software, practiced and written extensively about process control technology, and has worked extensively in pipeline leak detection. He is the inventor of the Pressure Point Analysis® leak detection system as well as the Locator® high-accuracy, low-bandwidth leak location system. He is a Registered Professional Engineer in five states and has worked on a broad scope of projects worldwide. His work has produced three books, numerous articles, and four patents. Edward has also worked extensively in military communications where he has authored many papers for military publications and participated in the development and evaluation of two radio antennas currently in U.S. inventory. He is a graduate of the U.S. Marine Corps Command and Staff College. He is the owner and president of EFA Technologies, Inc., manufacturer of the LeakNet family of pipeline leak detection products.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

Connect with Ed:
48x48-linkedinEmail

 

 

 

Book Excerpt + Q&A with Author of Mission Critical Operations

Book Excerpt + Q&A with Author of Mission Critical Operations

This ISA author Q&A was edited by Joel Don, ISA’s community manager. ISA’s new book, Mission Critical Operations Primer, focuses on the components of mission critical operations, including technology, standards, risk management, emergency response, cybersecurity, and operational activities and processes. It is a valuable resource to those new to the field and those who are currently in the workforce. In this Q&A feature, author Steve Mustard highlights the value and importance of his first ISA book. Click this link to download a free excerpt from Mission Critical Operations Primer. To get your copy of this informative reference manual, order it today on the ISA website.

 

Q. How would you briefly describe “mission-critical operations”?

A. Mission-critical is a subjective term. Any organization can claim to have mission-critical systems or operations but we are really looking at those organizations in the 16 critical infrastructure sectors for whom failure can result in serious consequences, such as loss of life, harm to the environment or significant financial loss through production impact or damage to plant. The book attempts to give an introduction to the key aspects across the mission-critical operations space.

Q. What would you say is the core objective of the book? What key messages/points of emphasis are you trying to communicate? What challenge or set of challenges is the book trying to address or solve?

A. The aim is to give an overview of the key aspects of mission-critical operations, such as standards and regulations, safety and risk management factors, operational processes, and the technology involved.

A wide variety of factors can affect mission-critical operations, including:

  • Hardware or software failures
  • Network communications problems
  • Accidental damage or disruption
  • Natural disasters
  • Deliberate damage, such as cyberattacks

Q. Who would you say would be the core audience for the book?

A. This book is aimed at those people who are looking to start a career in mission-critical organizations, such as an operator or technician. The objective is to provide an introduction into all the key areas of mission-critical work, and provide some guidance for further reading for those who want to delve into more detail in certain areas.

 

Blog Author Q&A Free Bonus! Click this link to download a free excerpt from The Condensed Handbook of Measurement and Control. To get your copy of this informative reference manual, order it today on the ISA website.
 

Q. What would you say to someone who may be considering reading the book? What would they gain by reading it?

A. The field of mission-critical operations is incredibly broad, and it can be hard to grasp all the terminology and issues that exist. While there are several books that go into depth in certain aspects, there are very few, if any, that cover the breadth of mission-critical operations as this book does. The book is an excellent introduction for those wishing to start a career and it is also an excellent guide for those already in the workforce.

Q. Cybersecurity is getting a lot of attention lately, but it’s important to focus on other mission-critical operations as well, correct?

A. Yes. Cybersecurity is a major driver in today’s mission-critical organizations so naturally it forms a big part of the book. However, there are other fundamentals of mission-critical operations that cannot be ignored, such as safety management and operational procedures. The book aims to provide a solid grounding in all the key aspects of mission-critical operations.

Q. Do you have any other points to make about the book…its importance and relevance today?

A. A whole culture of mission-critical operations specialists is emerging. These specialists understand the threats and risks as well as the consequences of failure. These specialists focus on areas such as robust IT network design, control system security, control room operations and alarm handling. In addition, they need to have a broad understanding of all key aspects of mission critical systems. No other career requires so many different aspects to be brought together in one role. The aim of this book is to provide a good introduction to all these aspects.

Meet the Author
steve-mustard

Steve Mustard, author of the new ISA book, Mission Critical Operations Primer, is an independent automation consultant and subject-matter expert of ISA and its umbrella association, the Automation Federation. He also is an ISA Executive Board member. Backed by nearly 30 years of software development experience, Mustard specializes in the development and management of real-time embedded equipment and automation systems, and the integration of real-time processing, decision-support and other disparate systems to improve business processes. He serves as president of National Automation, Inc. Mustard is a recognized authority on industrial cybersecurity, having developed and delivered cybersecurity management systems, procedures, training and guidance to multiple critical infrastructure organizations. He serves as the chair of the Automation Federation’s Cybersecurity Committee. Mustard is a licensed Professional Engineer, UK registered Chartered Engineer, a European registered Eur Ing, an ISA Certified Automation Professional (CAP) and a certified Global Industrial Cybersecurity Professional (GICSP). He also is a Fellow in the Institution of Engineering and Technology (IET), and a senior member of ISA.

Connect with Steve:

LinkedInTwitter

Email

 

 

Is Theft the New Frontier for Process Control Equipment?

Is Theft the New Frontier for Process Control Equipment?

This guest blog post, the third in a series, was written by Edward J. Farmer, PE, author of the new ISA book Detecting Leaks in Pipelines. If you would like more information on how to purchase the book, click this link. To download a free excerpt from Detecting Leaks in Pipelines, click here. Did you miss the first two blogs in this series? Read them here and here.

 

In the mid-1980s, I demonstrated an early-stage leak detection product to a Latin American company before extensive field testing had been completed. The test section ran from a refinery over some hills, into a storage and distribution point, 80 kilometers or so.

Monitoring was set up at the refinery and leaks were simulated near the center and at the far end of the line. Simulation involved opening a valve into some storage: a vacuum truck in the center and a storage tank at the end. Detection was reliable, but events not associated with known tests were also alarmed. An impression was being created that the system was not differentiating between leak conditions and noise. A somewhat animated discussion developed among the official observers and monitoring was curtailed for the day.

The next day, one of our proponents announced that the line had just been flown and an area discovered in which a road had been cut into the hillside adequate for large tanker trucks to reach the pipeline. A queue of tanker trucks was seen waiting to fill at an ad hoc and unmetered service point.

This was not just theft, it was planned, organized, and even timed to get the desired product into the appropriate truck, all without detection. This operation had apparently been routine for years and was well-known to the nearby diesel-consuming businesses.

Theft is rarely undertaken with the same care and process as company standards prescribe for normal operation. A crew, such as this one, may excavate to gain access to a pipeline and then perform a hot-tap in the usual way. Connections to the tap are seldom made in accordance with any known piping standards which, of course, eliminates the safety practices.

Most taps are not maintained. Care is not taken to prevent environmental damage which often appears as unusual degradation in the area around the taps. That used to be the primary clue that a theft operation has been under way. Automatic monitoring, of course, enables a team to respond directly to the theft site while the theft is taking place.

One can only wonder how such an egregious difference in produced vs. received diesel could have gone undetected under these circumstances for so long. In fact, many aspects of the operation were hard to understand. It was made clear to me that the details were none of my business, but after a few months of operator-internal issues our equipment was purchased to monitor the pipeline.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

Anti-theft solution benefits

Reduced theft would pay for the system that was deployed in perhaps a few hours, a day or two at the most. As it turned out, though, anti-theft equipment, regardless of payout, was not a simple sale. There were often “other issues” that had to be settled.

Years later, on a project in Southeast Asia, startup of a system monitoring an investor-funded and operated pipeline detected and located leaks at the same site over and over again. Apparently the builder was intimidated into “not noticing” line losses, and communication channels were “unreliable” with a location necessary to produce complete flow balance reports.  One could write a much longer story about life inside and outside of security fences, trusting people, damage that can result from inept line penetration, and all sorts of stuff like that.

Some taps are small, simple, and frighteningly fragile. An accidental footstep can initiate leakage that could go on for hours or days.

All of this is easily detected with modern leak detection and was detectable by properly operated equipment of the day. Loss of a fraction of a percent of line flow rate can be detected and located within meters in very short periods of time.

In a contemporary anti-theft operation for a motivated operator, 44 leakage events were detected over a week-long period – resulting in the arrest of most of the perpetrators. This effort, according to the operator, reduced the worst theft environment in their system to being theft-free.  Again, a pittance cost was amortized in minutes or, at the most, hours.

Top pipeline theft countries

One can wonder: Does this sort of thing really happen? It depends on where you are. Arranged by theft volume the top five theft countries are Nigeria, Mexico, Iraq, Russia, and Indonesia. Theft in these areas is generally thought to be increasing. One study concluded that theft was increasing at about 30 percent per year.

When the size of the operations in these areas is considered it is likely that more oil is being lost to theft than all forms of leakage or accidents. In at least one country it has been estimated that the value of oil stolen from the system actually exceeds that of oil sold. I don’t know that any study has produced a careful and detailed audit of this situation over time but even short-term, operations-focused investigations generally show a huge, preventable, and extremely expensive problem that discourages investment.

Sometimes substantial effort goes into establishing and operating invasive and hazardous taps. The excavation and piping facilitates extraction and use of the fluid but generally at the expense of people and industry along the pipeline. There are stories going back decades of massive damage caused by such clandestine operations.

Thieves have become much smarter over the years. In the past, a thief would hot-tap a line and use conventional, often exposed, piping to fill tanker trucks which would then take the product to market. Now, the business end of theft seems to have become far more subtle, and the technical aspects far more complex.

Compromised process control equipment

For example, there are now instances of process control equipment being used to inject water into a pipeline downstream of the extraction point so that operation appears normal during the theft withdrawal. All of this, of course, can be detected and located with appropriate monitoring.

It has been suggested that proper monitoring has sometimes been limited in order to facilitate theft, and sometimes implemented to control it, or at least modify the business operations involved. I really don’t know; most of the information about such things is anecdotal.

Nonetheless, if pipeline accident rates were increasing 30 percent per year there would be motivation and action. Theft operations can certainly be safety issues, but considering the amount and growth rate of product loss it is also becoming a factor in successful and profitable operation. It is thus worthy of concern as a significant operating issue.

Did you miss the first two blogs in this series? Read them here and here.

About the Author
Edward Farmer has more than 40 years of experience in the “high tech” part of the oil industry. He originally graduated with a bachelor of science degree in electrical engineering from California State University, Chico, where he also completed the master’s program in physical science. Over the years, Edward has designed SCADA hardware and software, practiced and written extensively about process control technology, and has worked extensively in pipeline leak detection. He is the inventor of the Pressure Point Analysis® leak detection system as well as the Locator® high-accuracy, low-bandwidth leak location system. He is a Registered Professional Engineer in five states and has worked on a broad scope of projects worldwide. His work has produced three books, numerous articles, and four patents. Edward has also worked extensively in military communications where he has authored many papers for military publications and participated in the development and evaluation of two radio antennas currently in U.S. inventory. He is a graduate of the U.S. Marine Corps Command and Staff College. He is the owner and president of EFA Technologies, Inc., manufacturer of the LeakNet family of pipeline leak detection products.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

Connect with Ed:
48x48-linkedinEmail

 

What You Can Learn About Pipeline Leaks From Government Statistics

What You Can Learn About Pipeline Leaks From Government Statistics

This guest blog post, the second in a series, was written by Edward J. Farmer, PE, author of the new ISA book Detecting Leaks in Pipelines. If you would like more information on how to purchase the book, click this link. To download a free excerpt from Detecting Leaks in Pipelines, click here. Did you miss the first post in this blog series? Click this link to read it.

 

When designing safety and protection systems, it is always useful to understand the nature of the threat. To that end, the U.S. Department of Transportation (DOT) has accumulated data and statistics regarding leaks on regulated pipelines. Some years ago, my company, EFA Technologies, used DOT data to explore the causes of pipeline leaks over a 10-year period. The results of that work were published and are included in Detecting Leaks in Pipelines as Appendix I.

The DOT categorized reported leaks into six specific categories plus one labeled “Other.” Over the 10-year study period there were 1,901 leaks that required reporting for one reason or another. This chart shows the causes distributed across the classification categories:

The “Other” category includes just over a quarter of the accidents, indicated to be the result of vandalism, gasket failure, “bullet hit the pipe” and a diversity of even more obscure issues which serve to remind us that it is hard to foresee and plan for everything. Appendix I in the book includes a lot more detail than we can explore here. The inescapable conclusion is that while many leaks can be prevented by planning, design, construction, maintenance, and management there are many that cannot.  Damage by others, for example, was the cause of nearly three-fourths of the “Outside Force” accidents.  In a subsequent paper (also in Detecting Leaks in Pipelines), I explored the higher accident frequency at “crossings,” places where a pipeline crosses some other right-of-way such as a railroad, highway, or utility easement.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here. Did you miss the first post in this blog series? Click this link to read it.
Clearly, some of the categories can be mitigated by the operator companies. A lot of thought, for example, goes into specifying the metallurgy of line pipe and the anti-corrosion measures that are appropriate on both the inside and the outside. Pipelines, though, often move past their initial purpose and past their design life.  Changing the use of a pipeline, or the fluid in it, or the rate-of-flow, or even features of the installation environment, may suggest different design criteria than what were originally appropriate, perhaps even optimal.

Cost of leaks

The accident statistics investigation also explored the cost of leaks. As one would expect, nearly any leak results in costs in the tens of millions of dollars, and seems to be increasing over time. About a third of the documented costs involve property damage and cleanup.  The rest go to fines, legal costs, and other legally mandated assessments. During this period the president of a major pipeline operator observed that while the costs associated with any accident are significant, the loss of good will by those who will not forget what happened is beyond calculation. Another industry icon, Constantine Nicandros, then president of CONOCO Inc, observed, “Every company in this business may be judged by the performance of the worst among us.” He went on to say that, “We can be sure that if we do not police ourselves, others will be more than happy to take up the task. I believe that in the days ahead our industry will thrive if we do a better job of listening to the public and earning their trust.”

These observations by these industry leaders help answer the question, how important is pipeline safety? They also suggest an analysis of what is required by mandate or regulation may be a subset of what is truly necessary or desirable.

These are old data but were stable during the study period and a couple of decades around them. Only the accident cost showed an upward trend. Appendix I shows a lot more detail.

Theft remains a concern

When this study was done, theft was involved in only a small number of operations. In the U.S., that’s probably still true. In many parts of the world, though, theft is a significant safety and financial hazard. If one were to revisit this study it would be very interesting to assess the impact, if any, of the increase in theft that we see in some parts of the world.

This study is a good place to start evaluation of the risks confronted by any pipeline operation. It provides a good list of threat causes and an assessment of the significance of each of them. While things change over time, and while they vary in each situation, these are factors that should be considered, but as time moves along, perhaps not all the factors that could be involved. Fortunately, there are processes for analyzing risk and some features of those will be discussed in a future blog post.

Did you miss the first post in this blog series? Click this link to read it.

About the Author
Edward Farmer has more than 40 years of experience in the “high tech” part of the oil industry. He originally graduated with a bachelor of science degree in electrical engineering from California State University, Chico, where he also completed the master’s program in physical science. Over the years, Edward has designed SCADA hardware and software, practiced and written extensively about process control technology, and has worked extensively in pipeline leak detection. He is the inventor of the Pressure Point Analysis® leak detection system as well as the Locator® high-accuracy, low-bandwidth leak location system. He is a Registered Professional Engineer in five states and has worked on a broad scope of projects worldwide. His work has produced three books, numerous articles, and four patents. Edward has also worked extensively in military communications where he has authored many papers for military publications and participated in the development and evaluation of two radio antennas currently in U.S. inventory. He is a graduate of the U.S. Marine Corps Command and Staff College. He is the owner and president of EFA Technologies, Inc., manufacturer of the LeakNet family of pipeline leak detection products.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

Connect with Ed:
48x48-linkedinEmail

 

How to Optimize Pipeline Leak Detection: Focus on Design, Equipment and Insightful Operating Practices

How to Optimize Pipeline Leak Detection: Focus on Design, Equipment and Insightful Operating Practices

This guest blog post, the first in a series, was written by Edward J. Farmer, PE, author of the new ISA book Detecting Leaks in Pipelines. If you would like more information on how to purchase the book, click this link. To download a free excerpt from Detecting Leaks in Pipelines, click here.

 

My new ISA book, Detecting Leaks in Pipelines, has generated quite a bit of interest and so I thought it would be useful to share some of the thoughts and feedback from other professionals. In this first in a series of blog posts, I plan to pass along the substance of various discussions and I’d like to invite your thoughts and input on what might be useful and relevant to your work.

In most petroleum and chemical processing units leaks generate a lot of urgent attention. Years ago, while sitting in a desk on the third floor of the engineering building in a large refinery we were all shocked with the rattling of our windows and the rising smoke from what we all knew as the lube oil unit. There was no doubt something untoward had begun and was continuing, and each of us did our jobs and followed directions. The damage was contained in a fairly small area and there were no injuries. Were we lucky?  Maybe, but this was a large and extremely responsible company with a good sense of organization and safe practice.  Sure, it was an emergency, but just as certainly it was handled according to plan.

While there were some bad moments during, and a few months of disruption after, life went on, and the company’s position in the community remained intact. The company was viewed as competent, responsible, and in-control. That was a long time ago, but I have long remembered the importance of those lessons.  The public will tolerate a refinery in its “backyard” when the refinery demonstrates community responsibility, good and safe working practices, and, above all, control of its operations.

Discovering an event such as this one is pretty easy in a refinery. Something like 3,000 people worked there and the process unit was near a major access road through its center. The fire was visible for miles in daylight. There was a plethora of indications this situation was of significant and urgent attention, and that attention minimized the damage and the social impact.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.
Many processing and transportation facilities, pipelines and lease equipment, for example, are automatically operated at locations rarely visited without specific purpose.  Remote monitoring of such locations can minimize event impact, and can demonstrate a competent and “in-control” industry with the safety of its workers, the public, and the environment clearly in its thoughts.

Additionally, demonstration of responsible operation can forestall the acceleration of regulation.  If, when needs are recognized, an operator implements appropriate and effective mitigation and containment procedures it is more likely safety practices will proceed in a rational and industry-relevant way.  Everyone is familiar with the impact of best intentions implemented under dire circumstances spawning unintended consequences.

Leak detection rarely prevents accidents. Good design, good equipment, and insightful operating practices do that.  Leak detection can, however, advise of conditions approaching hazard limits, and can quickly communicate the occurrence, location, and size of a leak.  This can initiate a timely and appropriate response to the right place, and assist in organizing the support logistics involved in mitigation and containment.

There are also other motivations. Theft is a growing problem is some areas.  It creates safety problems by incompetent or inappropriate taps into the pipeline which easily go wrong, producing explosions, fire, property damage, and injuries. These thefts also involve product loss, substantial amounts in some places. As the money to be made from stealing oil produced by other people increases, thieves become ever cleverer about avoiding timely discovery. Tricks, such as injecting water to replace the stolen oil, challenge all but well-designed leak detection systems. In one area, the operator caught several thieves. Word got out and quickly, the prospect of being caught during a theft operation discouraged the thieves who apparently moved onto less surveilled territory. The operator was asked about the payout time on the leak detection project and equipment and he replied, “Oh, perhaps a few minutes.”  Oil theft at that level is a lucrative business, but only when you don’t get caught!

Sometimes an interest in enhanced safety comes from changes in operation. Some pipelines change purpose over their lifetimes which can also change the anticipated risk. In one installation line velocity decreased due to low production rates which resulted in the accumulation of corrosive sludge and solids at low points. This increased the corrosion rate of already aging pipe, which ultimately required some rethinking of the maintenance program as well as the focus of the leak detection effort.

Think over the condition, use, and exposure of your facilities, and consider the value of being in control of an accident instead of just wishing you were. Consider your safety-oriented practices and tools and evaluate the benefits.

About the Author
Edward Farmer has more than 40 years of experience in the “high tech” part of the oil industry. He originally graduated with a bachelor of science degree in electrical engineering from California State University, Chico, where he also completed the master’s program in physical science. Over the years, Edward has designed SCADA hardware and software, practiced and written extensively about process control technology, and has worked extensively in pipeline leak detection. He is the inventor of the Pressure Point Analysis® leak detection system as well as the Locator® high-accuracy, low-bandwidth leak location system. He is a Registered Professional Engineer in five states and has worked on a broad scope of projects worldwide. His work has produced three books, numerous articles, and four patents. Edward has also worked extensively in military communications where he has authored many papers for military publications and participated in the development and evaluation of two radio antennas currently in U.S. inventory. He is a graduate of the U.S. Marine Corps Command and Staff College. He is the owner and president of EFA Technologies, Inc., manufacturer of the LeakNet family of pipeline leak detection products.

If you would like more information on how to purchase Detecting Leaks in Pipelines, click this link. To download a free excerpt from the book, click here.

Connect with Ed:
48x48-linkedinEmail

 

Book Excerpt + Q&A with Author of New Edition of Condensed Handbook of Measurement and Control

Book Excerpt + Q&A with Author of New Edition of Condensed Handbook of Measurement and Control

This ISA author Q&A was edited by Joel Don, ISA’s community manager. ISA recently published the fourth edition of The Condensed Handbook of Measurement and Control by Nabil (Bill) E. Battikha, PE. In this Q&A feature, Bill highlights the value and importance of this new edition of his bestselling ISA book. Click this link to download a free excerpt from The Condensed Handbook of Measurement and Control.

Q. Why were you compelled to publish an updated edition?

A. There have been many changes in technology over the past 10 years or so (since the publication of the third edition), particularly in the areas relating to control equipment symbology, sensors, and safety instrumented systems—among other topics. I also received some comments from my students, asking if a new edition was on the way.

The overall success of the previous printings (both the first and third editions were recognized by ISA as best sellers) also encouraged me to review the current book, update it, and publish a fourth edition.

Q. How would you describe the book’s core value to readers?

Its core value is that it covers—in a condensed format and practical approach—the fundamental knowledge required for applying process instrumentation and control. Readers are able to get answers to common, day-to-day questions relating to the implementation of process instrumentation and control systems.

Q. Why do you think the subject matter of this book continues to be relevant and important as a reference resource?

The book addresses the common challenges and concerns in process instrumentation and control implementations that are faced each day.

 

Blog Author Q&A Free Bonus! Click this link to download a free excerpt from The Condensed Handbook of Measurement and Control.
 

Q. What makes this fourth edition different or more useful than the third edition?

The fourth edition includes an entirely new chapter—on Check-out, Commissioning, and Start-up—a new appendix—on A Sample Specification for a Control Panel—and significant updates to all other 20 chapters and nine appendices.

Q. Do you have any other comments you would like to add?

This book is currently being used as the reference material for online courses offered at three North American universities.  You can learn more by visiting my website at www.bergotech.com.

Meet The Author
Nabil (Bill) E. Battikha, PE, has more than 40 years of engineering, management and hands-on experience in the field of process instrumentation and control. He serves as president of Bergotech, Inc., a firm specializing in process control education. Over the course of his extensive career in the U.S. and Canada, Battikha has worked with suppliers of control equipment, consultants and end users in virtually all areas of process control engineering, management and training. His working experience covers diverse industries, including petrochemicals, power generation, specialty and bulk chemicals, paints, films, automotive, breweries, rotating machinery and turbines, municipal and industrial waste incineration, coal handling, explosives and steel. Bill has helped develop ISA standards (ISA84 and ISA91) and presently serves on several ISA standard development committees. Over the course of his career, he has performed plant audits and assessments, co-authored a patent and a commercial software package, and acted as a technical advisor in an international court case. An accomplished author, he has written numerous technical papers and four ISA books on process instrumentation and controls. They include four editions of The Condensed Handbook of Measurement and ControlThe Management of Control Systems (1992), Developing Guidelines for Instrumentation & Control (1994) and Managing Industrial Controls (2014). Over the last 20 years, Bill has been highly involved as a process control educator. He has developed courses and conducted process instrumentation and control training at: Penn State University, the University of Wisconsin, the University of Kansas, the University of Toronto, Dalhousie University, and ISA. He also designed and conducted in-plant customized training courses and seminars for engineering/technical personnel, operators and sales staff. Bill earned a bachelor of science degree in mechanical engineering.

Connect with Nabil
LinkedIn

 

Pin It on Pinterest